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Ø Summary: This work tactfully bridges three interdependent yet parameter-free components, i.e., Parameter

Sharing Scheme, Cross-Modality Channel Shuffle and Modality-Specific Pixel Shift, into a bidirectional compact

scheme for fusing multimodal features, in the perspective of promoting feature representation learning.

Ø Two architectural designs: 

(a) Our parameter-sharing scheme 
for multimodal training 

Shared 
conv layer

Output 1Input 1

Input 2 Output 2

(b) Comparison of total parameters 
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(a) Unidirectional fusion
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(b) Bidirectional fusion  
(with asymmetric fusion blocks)

Parameter-sharing Scheme: A compact multimodal 
fusion scheme, with shared Convs and individual BNs. 

Bidirectional Fusion Scheme: A multi-layer fusion scheme, 
enabling each branch to exploit multimodal features.
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Ø Bidirectional Fusion Scheme, with two designed asymmetric fusion operations.

Ø Channel Shuffle: To strengthen the interaction of multimodal information flow across channels.

Ø Pixel Shift: To improve spatial information communication of multimodal features.
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(a) Channel shuffle operation (b) Pixel shift operation
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(c) Integration into residual blocks 
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Ø Experiments: We consider two tasks, including semantic segmentation and image translation.
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Ø Experiments: We consider two tasks, including semantic segmentation and image translation.
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Normal+Texture→RGB
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Shade+Depth→RGB

Input modality 1 Input modality 2 Prediction from modality 1 Prediction from modality 2 Multimodal prediction by 
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Multimodal prediction by 
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This part involves a wide range of modalities
including depth, normal, shade, texture and
edge, and aims to translate these data to RGB.


