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Regularized Adversarial Sampling TIKM2OIg

Background: Adversarial sampling via Policy Gradient

* Sampling with Generator: provides probabilities to candidate samples.
* As sampling probability cannot be updated via gradient BP, we use
policy gradient (REINFORCE).
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Existing adversarial sampling in recommender systems:

e |mproves data efficiency by seeking competitive negative samples
for pairwise training.

e Positive sample: a user-item pair, the user gives a like to the item.

e ‘Negative’ sample: a user-item pair, the user has not interacted
with the item (random combination).

Cannot fit the CTR task:

e Because this sampling method cannot deal with real negative
samples. Why?
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Regularized Adversarial Sampling (rGAN):

e Common: Improves data efficiency by seeking competitive samples
for pointwise or pairwise training.

e Key difference: Can use the strong information of the practical
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Regularized Adversarial Sampling (rGAN):

e Common: Improves data efficiency by seeking competitive samples
for pointwise or pairwise training.

e Key difference: Can use the strong information of the practical
negative samples.

rGAN indicates that the selected negative sample needs to be:
e Competitive among all the negatives.
e Correlative to the given positive sample.
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loss function in the discriminator:

Lp =) [~ foleh®) + foleh)) +v],. ' ~po(s'ls)
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loss function in the discriminator:

Lp =) [~ foleh®) + foleh)) +v],. ' ~po(s'ls)

SET

The selected negative sample needs to be:

e Competitive among all the negatives, s' should have a high score, so as to be
a strong impetus when training the discriminator.
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loss function in the discriminator:

Lp =) [~ foleh®) + foleh)) +v],. ' ~po(s'ls)

SET

The selected negative sample needs to be:

e Competitive among all the negatives, s' should have a high score, so as to be
a strong impetus when training the discriminator.

e Correlative to the given positive sample: There should exist enough similarity
between the embeddings of s and s’. We use Euclidean distances to restrict the
embeddings calculated in the discriminator embedding space works better.
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We use Euclidean distances as a penalty p(s,s'):
] ] h h
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We design our generator based on the two properties: to maximize the

expectation of scores of the selected negative samples with the penalties for
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The sampling policy for the negative sample s' regarding to a positive sample s, is

modeled as a union function of the generator sample embeddings:
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Time-aware Attention:
e Explicitly use the clicking temporal signals of users’ historical data.
e Absolute time for periodicity representation.

e Relative time for temporal relation representation.
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Performance of various sampling strategies

in-station-Sep. out-station-Jul. out-station-May.
AUC Relalmpr | AUC Relalmpr | AUC  Relalmpr

Logistic Regression | 0.7643 0.15% 0.6790 -5.34% 0.6251 -7.81%

1:5 Under Sampling | 0.7587 -1.97% 0.6818 -3.86% 0.6270 -6.41%
User-fixed Sampling | 0.7589 -1.89% 0.6866 -1.32% 0.6379 1.62%
Uniform Sampling* | 0.7639 0.00% 0.6891 0.00% 0.6357 0.00%

IRGAN Sampling 0.7366  -10.34% | 0.6597  -15.55% | 0.6165 -14.15%
IRGAN++ Sampling | 0.7655 0.61% 0.6924 1.75% 0.6380 1.69%
rGAN Sampling | 0.7745 4.02% 0.7021 6.87% 0.6439 6.04%

Model
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strength and weakness:
rGAN brings better relative CTR values —— is beneficial for ranking.

But the proportion of the positives and the negatives in the constructed training
data will not match the real data proportion. Such mismatching will lead to an

inaccurate absolute CTR estimates —— is bad for bidding.

Kuang-chih Lee, Burkay Orten, Ali Dasdan, and Wentong Li. 2012. Estimating conversion rate in display
advertising from past erformance data.
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Calibration results
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Comparison Results

Performance of various embedding models

CTIKM2049

in-station-Sep.

out-station-Jul.

out-station-May.

|
Mode AUC  Relalmpr | AUC  Relalmpr | AUC  Relalmpr
TWO-layer GRU 0.7350 -6.33% 0.6726 -6.70% 0.6271 -4.36%
DIN* 0.7509 0.00% 0.6850 0.00% 0.6329 0.00%
GRU Attention 0.7523 0.56% 0.6892 2.27% 0.6322 -0.53%
Time-aware Attention | 0.7745 9.41% 0.7021 9.24% 0.6439 8.28%
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