

Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving

Yinpeng Dong^{1,5}, Caixin Kang², Jinlai Zhang³, Zijian Zhu⁴, Yikai Wang¹, Xiao Yang¹, Hang Su^{1,6}, Xingxing Wei², Jun Zhu^{1,5,6}

¹Dept. of Comp. Sci. and Tech., Institute for AI, Tsinghua-Bosch Joint ML Center, Tsinghua University ²Institute of Artificial Intelligence, Beihang University ³Guangxi University ⁴Shanghai Jiao Tong University ⁵RealAI ⁶Peng Cheng Laboratory, Pazhou Laboratory (Huangpu) *Project Page: <u>https://autodrive-corruption.github.io</u>*

Github: https://github.com/thu-ml/3D_Corruptions_AD

Overview

We build corruption robustness benchmarks of **27 corruption types** for 3D object detection in autonomous driving.

Background

Autonomous driving may encounter **real-world corruptions** caused by adverse weathers, sensor noises, uncommon objects, etc., leading to inferior performance and causing safety problems. The existing datasets are **not comprehensive** enough due to **high collection costs of rare data**.

Corner cases (Li et al., 2022)

Adverse weather (Pitropov et al., 2020)

Background

There are existing benchmarks to evaluate the corruption robustness on image classification and point cloud recognition. But they do not consider the **real-world scenarios** in autonomous driving.

Image corruptions (Hendrycks and Dietterich, 2019)

Point cloud corruptions (Ren et al., 2022)

Corruptions

We design 27 types of common corruptions for both LiDAR and camera inputs considering real-world driving scenarios.

- Weather-level: Snow, Rain, Fog, Strong sunlight
- Sensor-level: Density decrease, LiDAR crosstalk, FOV lost, etc.
- Motion-level: Motion compensation, Moving objects, Motion blur
- Object-level: Local density decrease, Shear, Scale, Rotation, etc.
- Alignment-level: Spatial misalignment, Temporal misalignment

Benchmarks

• KITTI-C:

$$AP_{cor} = \frac{1}{|C|} \sum_{c \in C} \frac{1}{5} \sum_{s=1}^{5} AP_{c,s}; \quad RCE = \frac{AP_{clean} - AP_{cor}}{AP_{clean}}$$

- $AP_{c,s}$ denotes the performance under corruption *c* at severity level *s*.
- AP_{clean} denotes the performance on clean dataset.
- nuScenes-C: we measure mAP_{cor} and NDS_{cor} .
- Waymo-C: we measure mAP_{cor} and $mAPH_{cor}$.

Benchmarks

Model	Modality	Representation	Detection	
SECOND [60]	LiDAR-only	voxel-based	one-stage	
PointPillars [29]	LiDAR-only	voxel-based	one-stage	
PointRCNN [48]	LiDAR-only	point-based	two-stage	
Part- A^2 [49]	LiDAR-only	voxel-based	two-stage	
PV-RCNN [47]	LiDAR-only	point-voxel-based	two-stage	
3DSSD [61]	LiDAR-only	point-based	one-stage	
SMOKE [36]	camera-only	monocular	one-stage	
PGD [55]	camera-only	monocular	one-stage	
ImVoxelNet [45]	camera-only	monocular	one-stage	
EPNet [26]	fusion	point-level	two-stage	
Focals Conv [13]	fusion	point-level	two-stage	

(a) Evaluated models on KITTI-C.

Model	Modality	Representation	Detection		
PointPillars [29]	LiDAR-only	voxel-based	one-stage		
SSN [70]	LiDAR-only	voxel-based	one-stage		
CenterPoint [62]	LiDAR-only	voxel-based	two-stage		
FCOS3D [56]	camera-only	monocular	one-stage		
PGD [55]	camera-only	monocular	one-stage		
DETR3D [58]	camera-only	multi-view	query-based		
BEVFormer [33]	camera-only	multi-view	query-based		
FUTR3D [12]	fusion	proposal-level	query-based		
TransFusion [2]	fusion	proposal-level	query-based		
BEVFusion [35]	fusion	unified	query-based		

(b) Evaluated models on nuScenes-C.

We select representative 3D object detection models including LiDAR-only, camera-only, and LiDAR-camera fusion models.

Evaluation on KITTI-C

JUNE 18-22,	2023 🎽 💼 🛖 🛖
CVD	
U VI	VANCOUVER, CANADA

Corruption		LiDAR-only							Camera-only			LC Fusion	
	Corruption		PointPillars	PointRCNN	Part- A^2	PV-RCNN	3DSSD	SMOKE	PGD	ImVoxelNet	EPNet	Focals Conv	
None	(AP _{clean})	81.59	78.41	80.57	82.45	84.39	80.03	7.09	8.10	11.49	82.72	85.88	
	Snow	52.34	36.47	50.36	42.70	52.35	27.12	2.47	0.63	0.22	34.58	34.77	
Weather	Rain	52.55	36.18	51.27	41.63	51.58	26.28	3.94	3.06	1.24	36.27	41.30	
weather	Fog	74.10	64.28	72.14	71.61	79.47	45.89	5.63	0.87	1.34	44.35	44.55	
	Sunlight	78.32	62.28	62.78	76.45	79.91	26.09	6.00	7.07	10.08	69.65	80.97	
	Density	80.18	76.49	80.35	80.53	82.79	77.65	-	-	-	82.09	84.95	
	Cutout	73.59	70.28	73.94	76.08	76.09	73.05	-	-	-	76.10	78.06	
	Crosstalk	80.24	70.85	71.53	79.95	82.34	46.49	-	-	-	82.10	85.82	
	Gaussian (L)	64.90	74.68	61.20	60.73	65.11	59.14	-	-	-	60.88	82.14	
Sensor	Uniform (L)	79.18	77.31	76.39	77.77	81.16	74.91	-	-	-	79.24	85.81	
	Impulse (L)	81.43	78.17	79.78	80.80	82.81	78.28	-	-	-	81.63	85.01	
	Gaussian (C)	-	-	-	-	-	-	1.56	1.71	2.43	80.64	80.97	
	Uniform (C)	-	-	-	-	-	-	2.67	3.29	4.85	81.61	83.38	
	Impulse (C)	-	-	-	-	-	-	1.83	1.14	2.13	81.18	80.83	
Mation	Moving Obj.	52.69	50.15	50.54	54.62	54.60	52.47	1.67	2.64	5.93	55.78	49.14	
WIGHT	Motion Blur	-	-	-	-	-	-	3.51	3.36	4.19	74.71	81.08	
	Local Density	75.10	69.56	74.24	79.57	77.63	77.96	-	-	-	76.73	80.84	
	Local Cutout	68.29	61.80	67.94	75.06	72.29	73.22	-	-	-	69.92	76.64	
	Local Gaussian	72.31	76.58	69.82	77.44	70.44	75.11	-	-	-	75.76	82.02	
Object	Local Uniform	80.17	78.04	77.67	80.77	82.09	78.64	-	-	-	81.71	84.69	
Object	Local Impulse	81.56	78.43	80.26	82.25	84.03	79.53	-	-	-	82.21	85.78	
	Shear	41.64	39.63	39.80	37.08	47.72	26.56	1.68	2.99	1.33	41.43	45.77	
	Scale	73.11	70.29	71.50	75.90	76.81	75.02	0.13	0.15	0.33	69.05	69.48	
	Rotation	76.84	72.70	75.57	77.50	79.93	76.98	1.11	2.14	2.57	74.62	77.76	
Alignment	Spatial	-	-	-	-	-	-	-	-	-	35.14	43.01	
Averag	$e(AP_{cor})$	70.45	65.48	67.74	69.92	72.59	60.55	2.68	2.42	3.05	67.81	71.87	

- Weather-level and motion-level corruptions affect the performance most.
- Fusion models have better performance under LiDAR corruptions, but have worst performance under LiDAR-camera corruptions.
- There may exist a trade-off between corruption robustness and efficiency.

Evaluation on nuScenes-C

Corruption		LiDAR-only			Camera-only				LC Fusion		
	ruption	PointPillars	SSN	CenterPoint	FCOS3D	PGD	DETR3D	BEVFormer	FUTR3D	TransFusion	BEVFusion
None (1	$\mathrm{mAP}_{\mathrm{clean}}$)	27.69	46.65	59.28	23.86	23.19	34.71	41.65	64.17	66.38	68.45
Weather	Snow	27.57	46.38	55.90	2.01	2.30	5.08	5.73	52.73	63.30	62.84
	Rain	27.71	46.50	56.08	13.00	13.51	20.39	24.97	58.40	65.35	66.13
	Fog	24.49	41.64	43.78	13.53	12.83	27.89	32.76	53.19	53.67	54.10
	Sunlight	23.71	40.28	54.20	17.20	22.77	34.66	41.68	57.70	55.14	64.42
	Density	27.27	46.14	58.60	-	-	-	-	63.72	65.77	67.79
	Cutout	24.14	40.95	56.28	-	-	-	-	62.25	63.66	66.18
	Crosstalk	25.92	44.08	56.64	-	-	-	-	62.66	64.67	67.32
	FOV Lost	8.87	15.40	20.84	-	-	-	-	26.32	24.63	27.17
Sonsor	Gaussian (L)	19.41	39.16	45.79	-	-	-	-	58.94	55.10	60.64
Sensor	Uniform (L)	25.60	45.00	56.12	-	-	-	-	63.21	64.72	66.81
	Impulse (L)	26.44	45.58	57.67	-	-	-	-	63.43	65.51	67.54
	Gaussian (C)	-	-	-	3.96	4.33	14.86	15.04	54.96	64.52	64.44
	Uniform (C)	-	-	-	8.12	8.48	21.49	23.00	57.61	65.26	65.81
	Impulse (C)	-	-	-	3.55	3.78	14.32	13.99	55.16	64.37	64.30
	Compensation	3.85	10.39	11.02	-	-	-	-	31.87	9.01	27.57
Motion	Moving Obj.	19.38	35.11	44.30	10.36	10.47	16.63	20.22	45.43	51.01	51.63
	Motion Blur	-	-	-	10.19	9.64	11.06	19.79	55.99	64.39	64.74
	Local Density	26.70	45.42	57.55	-	-	-	-	63.60	65.65	67.42
	Local Cutout	17.97	32.16	48.36	-	-	-	-	61.85	63.33	63.41
	Local Gaussian	25.93	43.71	51.13	-	-	-	-	62.94	63.76	64.34
Object	Local Uniform	27.69	46.87	57.87	-	-	-	-	64.09	66.20	67.58
Object	Local Impulse	27.67	46.88	58.49	-	-	-	-	64.02	66.29	67.91
	Shear	26.34	43.28	49.57	17.20	16.66	17.46	24.71	55.42	62.32	60.72
	Scale	27.29	45.98	51.13	6.75	6.57	12.02	17.64	56.79	64.13	64.57
	Rotation	27.80	46.93	54.68	17.21	16.84	27.28	33.97	59.64	63.36	65.13
Alignment	Spatial	-	-	-	-	-	-	-	63.77	66.22	68.39
Augument	Temporal	-	-	-	-	-	-	-	51.43	43.65	49.02
Average	$e(mAP_{cor})$	23.42	40.37	49.81	10.26	10.68	18.60	22.79	56.99	58.73	61.03

- Motion-level corruptions affect the performance most.
- Camera-only models are more vulnerable under corruptions.
- There is a trade-off of corruption robustness of fusion models under camera and LiDAR corruptions, since different models have varying reliance on modalities.

Thanks

