

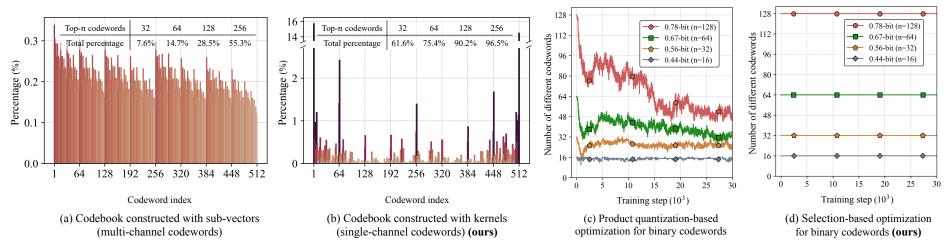
Yikai Wang¹, Wenbing Huang², Yinpeng Dong^{1,3}, Fuchun Sun¹, Anbang Yao⁴

¹BNRist Center, State Key Lab on Intelligent Technology and Systems,
Department of Computer Science and Technology, Tsinghua University

²Gaoling School of Artificial Intelligence, Renmin University of China ³RealAI ⁴Intel Labs China

Primary Contact: Yikai Wang (yikaiw@outlook.com)

- We introduce how to compact and accelerate BNN further by <u>Sparse Kernel Selection</u>, abbreviated as **Sparks**.
- Our work is built based on a previously revealed phenomenon (by SNN^[1]) that the 3×3 binary kernels in successful BNNs are nearly power-law distributed, **their values being mostly clustered into a small portion of codewords**. See the difference between Figure (a) and (b).
- In SNN, we observe that the sub-codebook is easy to degenerate during training (see Figure (c)), since codewords tend to be repetitive when being updated independently.
- While in our Sparks (Figure (d)), the diversity of codewords preserves by **selection-based learning**.



[1] Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks. ICCV 2021.

 $(K = 3 \text{ for } 3 \times 3 \text{ binary kernels})$

Property 1 We denote $\mathbb{B} = \{-1, +1\}^{K \times K}$ as the codebook of binary kernels. For each $\mathbf{w} \in \mathbb{R}^{K \times K}$, the binary kernel $\hat{\mathbf{w}}$ can be derived by a grouping process:

$$\hat{\boldsymbol{w}} = \operatorname{sign}(\boldsymbol{w}) = \arg\min_{\boldsymbol{u} \in \mathbb{R}} \|\boldsymbol{u} - \boldsymbol{w}\|_{2}. \tag{1}$$

We compact BNNs by recasting the grouping as $\hat{\boldsymbol{w}} = \arg\min_{\boldsymbol{u} \in \mathbb{U}} \|\boldsymbol{u} - \boldsymbol{w}\|_2$, s.t. $\mathbb{U} \subseteq \mathbb{B}$.

Matrix representation, where P is a permutation matrix and V is fixed as a certain initial selection,

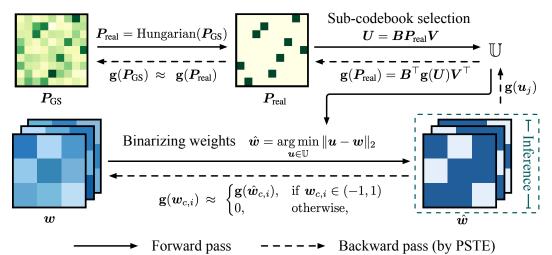
$$\hat{oldsymbol{w}} = rg \min_{oldsymbol{u} \in \mathbb{U}} \|oldsymbol{u} - oldsymbol{w}\|_2, \ extit{s.t.} \ oldsymbol{U} = oldsymbol{BPV}, oldsymbol{P} \in \mathbb{P}_N,$$

We learn the permutation matrix P by Gumbel-Sinkhorn, denoted as P_{GS} .

Forward pass

$$egin{aligned} m{P}_{ ext{real}} &= \operatorname{Hungarian}(m{P}_{ ext{GS}}), \ m{U} &= m{B}m{P}_{ ext{real}}m{V}, \ \hat{m{w}}_c &= rg\min_{m{u} \in \mathbb{U}} \|m{u} - m{w}_c\|_2, \end{aligned}$$

$egin{aligned} \mathbf{Backward\ pass} \ & \mathbf{g}(oldsymbol{w}_{c,i}) pprox egin{aligned} \mathbf{g}(oldsymbol{w}_{c,i}), & ext{if } oldsymbol{w}_{c,i} \in (-1,1)\,, \ 0, & ext{otherwise}, \end{aligned} \ & \mathbf{g}(oldsymbol{u}_j) = \sum_{c=1}^{C_{ ext{in}} imes C_{ ext{out}}} \mathbf{g}(oldsymbol{\hat{w}}_c) \cdot \mathbb{I}_{oldsymbol{u}_j = ext{arg min}_{oldsymbol{u} \in \mathbb{U}} \|oldsymbol{u} - oldsymbol{w}_c\|_2}, \ & \mathbf{g}(oldsymbol{P}_{ ext{real}}) = oldsymbol{B}^{ op} \mathbf{g}(oldsymbol{U}) oldsymbol{V}^{ op}, \ & \mathbf{g}(oldsymbol{P}_{ ext{GS}}) pprox \mathbf{g}(oldsymbol{P}_{ ext{real}}), & ext{(our PSTE, will be introduced)} \end{aligned}$



How does Gumbel-Sinkhorn in our setting work?

Given a matrix $X \in \mathbb{R}^{N \times N}$ ($N = |\mathbb{B}|$), the Sinkhorn operator over $\mathcal{S}(X)$ is proceeded as follow,

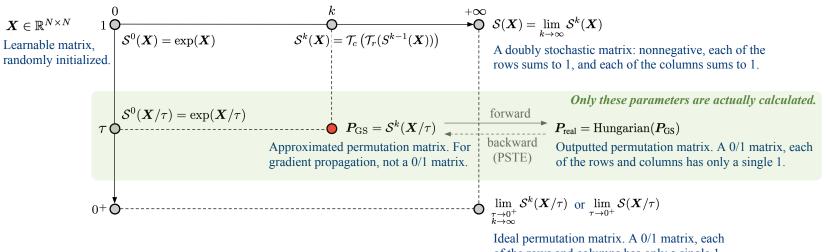
$$S^0(\boldsymbol{X}) = \exp(\boldsymbol{X}),\tag{5}$$

$$S^{k}(\boldsymbol{X}) = \mathcal{T}_{c}\left(\mathcal{T}_{r}(S^{k-1}(\boldsymbol{X}))\right),\tag{6}$$

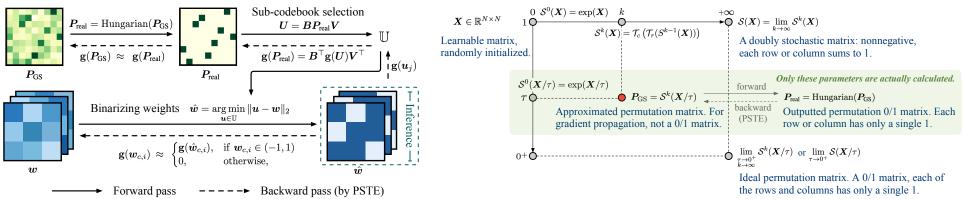
$$S(\mathbf{X}) = \lim_{k \to \infty} S^k(\mathbf{X}),\tag{7}$$

where $\mathcal{T}_r(X) = X \oslash (X \mathbf{1}_N \mathbf{1}_N^\top)$ and $\mathcal{T}_c(X) = X \oslash (\mathbf{1}_N \mathbf{1}_N^\top X)$ are the row-wise and column-wise normalization operators, and \oslash denotes the element-wise division. For stability purpose, both normalization operators are calculated in the log domain in practice. The work by [41] proved that S(X) belongs to the Birkhoff polytope—the set of doubly stochastic matrices.

By substituting the Gumbel-Sinkhorn matrix, we characterize the sub-codebook selection as $U = BS^k((X + \epsilon)/\tau)V$,



of the rows and columns has only a single 1.



PSTE: Approximate the gradient of the Gumbel-Sinkhorn matrix P_{GS} with P_{real} . We have the following theorem to guarantee the convergence for sufficiently large k and small τ .

Lemma 1 For sufficiently large k and small τ , we define the entropy of a doubly-stochastic matrix \mathbf{P} as $h(\mathbf{P}) = -\sum_{i,j} P_{i,j} \log P_{i,j}$, and denote the rate of convergence for the Sinkhorn operator as $r(0 < r < 1)^3$. There exists a convergence series s_{τ} ($s_{\tau} \to 0$ when $\tau \to 0^+$) that satisfies

$$\|\mathbf{P}_{\text{real}} - \mathbf{P}_{\text{GS}}\|_{2}^{2} = \mathcal{O}(s_{\tau}^{2} + r^{2k}).$$
 (18)

Theorem 1 Assume that the training objective f w.r.t. P_{GS} is L-smooth, and the stochastic gradient of P_{real} is bounded by $\mathbb{E}\|\mathbf{g}(P_{real})\|_2^2 \le \sigma^2$. Denote the rate of convergence for the Sinkhorn operator as r(0 < r < 1) and the stationary point as P_{GS}^* . Let the learning rate of PSTE be $\eta = \frac{c}{\sqrt{T}}$ with $c = \sqrt{\frac{f(P_{GS}^0) - f(P_{GS}^*)}{L\sigma^2}}$. For a uniformly chosen u from the iterates $\{P_{real}^0, \cdots, P_{real}^T\}$, concretely $u = P_{real}^t$ with the probability $p_t = \frac{1}{T+1}$, it holds in expectation over the stochasticity and the selection of u:

$$\mathbb{E}\|\nabla f(\boldsymbol{u})\|_{2}^{2} = \mathcal{O}\left(\sigma\sqrt{\frac{f(\boldsymbol{P}_{\mathrm{GS}}^{0}) - f(\boldsymbol{P}_{\mathrm{GS}}^{\star})}{T/L}} + L^{2}\left(s_{\tau}^{2} + r^{2k}\right)\right). \tag{19}$$

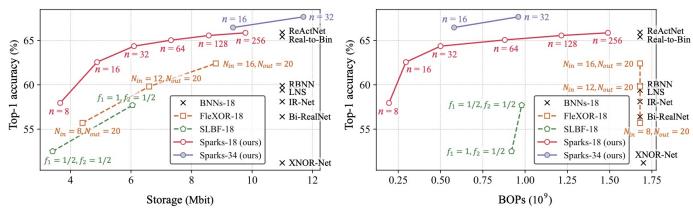
• Comparisons of top-1 and top-5 accuracies with state-of-the-art methods on ImageNet based on ResNet-18.

Method	Bit-width	Accuracy (%)		Storage	BOPs	
Wichiod	(W/A)	Top-1	Top-5	(Mbit)	$(\times 10^{9})$	
Full-precision	32/32	69.6	89.2	351.5	$107.2(1\times)$	
BNN [16]	1/1	42.2	69.2	11.0 (32×)	1.70 (63×)	
XNOR-Net [37]	1/1	51.2	73.2	$11.0(32\times)$	$1.70(63\times)$	
Bi-RealNet [31]	1/1	56.4	79.5	$11.0(32\times)$	1.68 (64×)	
IR-Net [36]	1/1	58.1	80.0	11.0 (32×)	1.68 (64×)	
LNS [10]	1/1	59.4	81.7	$11.0(32\times)$	1.68 (64×)	
RBNN [26]	1/1	59.9	81.9	$11.0(32\times)$	1.68 (64×)	
Ensemble-BNN [52]	$(1/1)\times 6$	61.0	-	65.9 (5.3×)	10.6 (10×)	
ABC-Net [28]	$(1/1) \times 5^2$	65.0	85.9	274.5 (1.3×)	42.5 (2.5×)	
Real-to-Bin [33]	1/1	65.4	86.2	$11.0(32\times)$	1.68 (64×)	
ReActNet [32]	1/1	65.9	86.4	11.0 (32×)	1.68 (64×)	
SLBF [24]	0.55/1	57.7	80.2	6.05 (58×)	0.92 (117×)	
SLBF [24]	0.31/1	52.5	76.1	$3.41(103\times)$	$0.98(110\times)$	
FleXOR [25]	0.80/1	62.4	83.0	$8.80(40\times)$	$1.68(64\times)$	
FleXOR [25]	0.60/1	59.8	81.9	$6.60(53\times)$	$1.68(64 \times)$	
Sparks (ours)	0.78/1	65.5	86.2	8.57 (41×)	1.22 (88×)	
Sparks (ours)	0.67/1	65.0	86.0	$7.32(48\times)$	$0.88 (122 \times)$	
Sparks (ours)	0.56/1	64.3	85.6	6.10 (58×)	$0.50(214 \times)$	

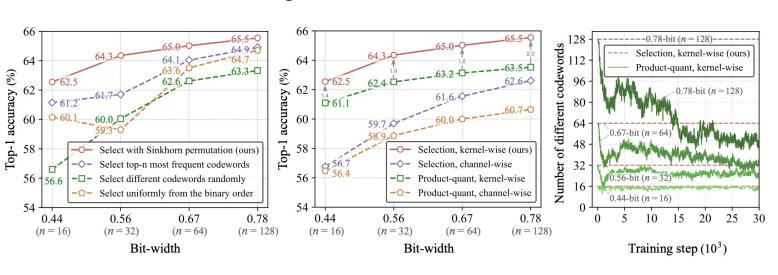
• Results when extending our Sparks to wider or deeper models.

Method	Backbone	Bit-width (W/A)	Accura Top-1	acy (%) Top-5	Storage (Mbit)	BOPs (×10 ⁹)
ReActNet [32]	ResNet-18	1/1	65.9	86.4	11.0	1.68
Sparks-wide	ResNet-18 (+ABC-Net [28])	$(0.56/1) \times 3$	66.7	86.9	18.3	1.50
Sparks-deep Sparks-deep	ResNet-34 ResNet-34	0.56/1 0.44/1	67.6 66.4	87.5 86.7	11.7 9.4	0.96 0.58

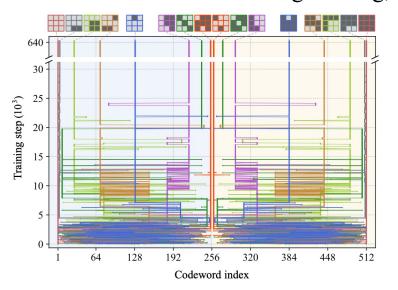
• Trade-off between performance and complexity on ImageNet,



• Ablation studies on ImageNet with ResNet-18,



Codewords selection during training,



Thanks