

Yikai Wang¹, Fuchun Sun¹, Duo Li², Anbang Yao²

¹ Tsinghua University ² Intel Labs China

> Objective:

Obtain a single model which can handle different image resolutions during inference.

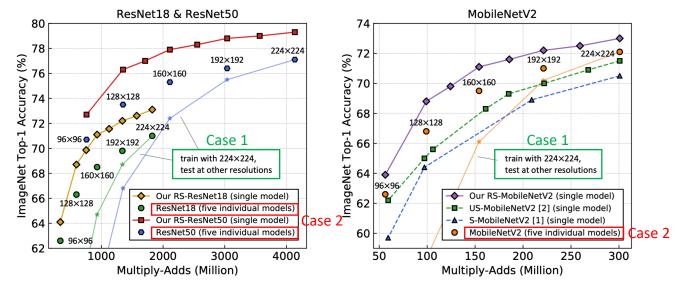
> Motivation:

By switching resolutions, the **running speeds and costs are adjustable** to flexibly handle the real-time latency and power requirements **for different application scenarios or workloads**.

Why this is hard for common cases:

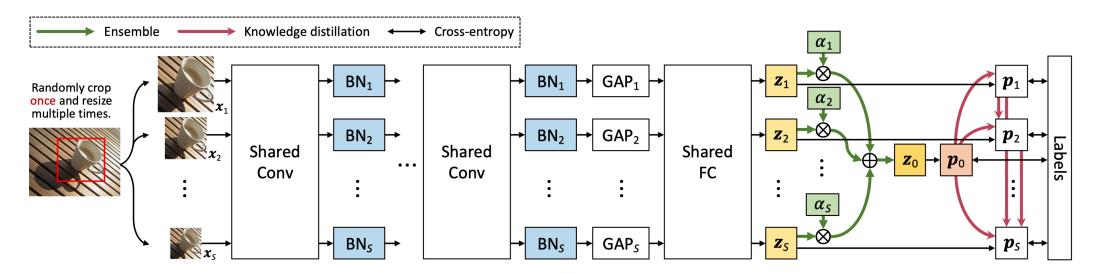
Case 1: Training a model with a fixed image resolution input——Acc. drops when tested at other resolutions.

Case 2: Training an individual model for each image resolution.



[1] Slimmable neural networks. ICLR2019. [2] Universally slimmable networks and improved training techniques. ICCV2019.

Key elements of the paper:



- 1. Basic framework——share parameters yet privatize BNs.
- 2. Analysis of multi-resolution interaction effects.
- 3. On-the-fly ensemble and knowledge distillation.

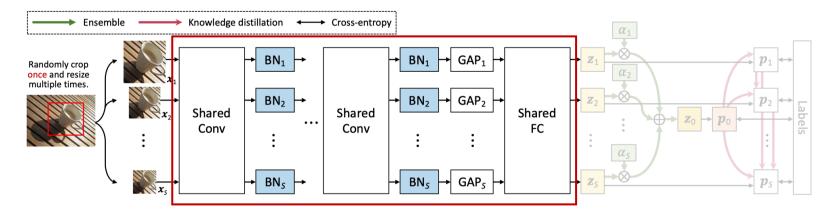
> 1. Basic framework:

For multi-resolution training, the total loss function is the sum of the cross-entropy losses,

$$\mathcal{L}_{cls} = \sum_{s=1}^{S} \mathcal{H}(\boldsymbol{x}_{s}, \boldsymbol{y}) \text{ , } \qquad \text{where } \quad \mathcal{H}(\boldsymbol{x}, \boldsymbol{y}) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} \delta(c, y^{i}) \log \left(p(c | \boldsymbol{x}^{i}, \boldsymbol{\theta}) \right)$$

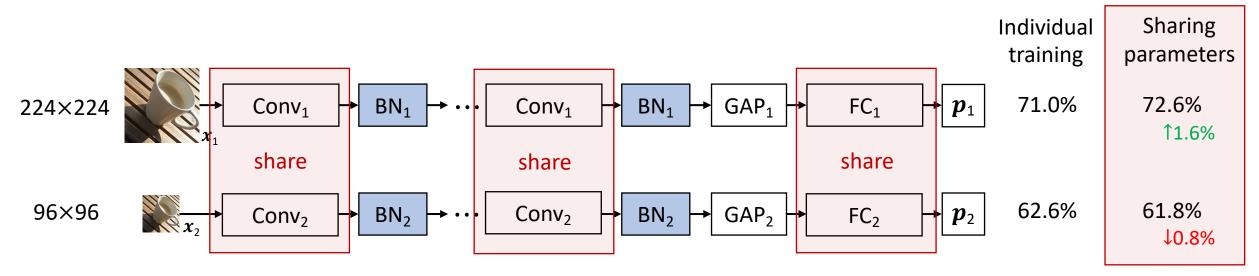
Share parameters yet privatize Batch Normalization layers, for the sth resolution:

$$oldsymbol{y}_s' = oldsymbol{\gamma}_s rac{oldsymbol{y}_s - oldsymbol{\mu}_s}{\sqrt{oldsymbol{\sigma}_s^2 + \epsilon}} + oldsymbol{eta}_s, s \in \{1, 2, \cdots, S\}$$



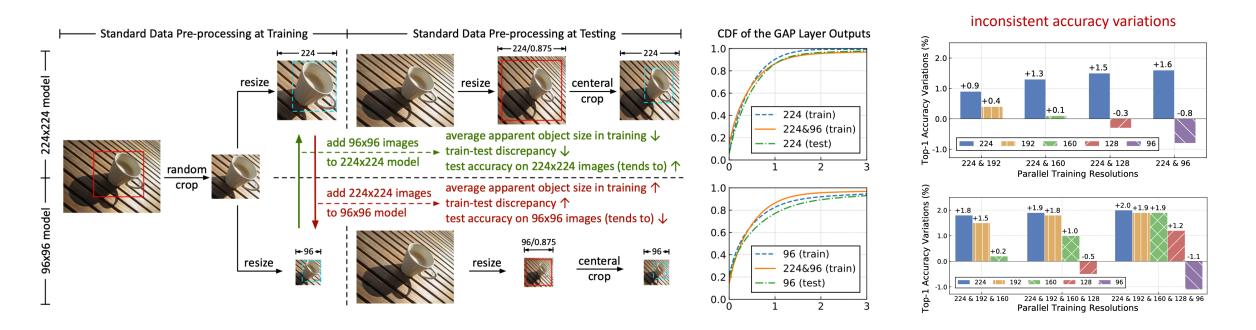
> 2. Analysis of multi-resolution interaction effects

- ➢ For image recognition, usually a large image resolution corresponds to a high accuracy.
- ▶ E.g, for ResNet18, we get 71.0% and 62.6% top-1 accuracies for 224×224 and 96×96 respectively.
- What if we share the model parameters, including all Conv layers and the FC layer?
- The result is, by simply adding the 96×96 resolution images for co-training, accuracy at the 224×224 resolution is obviously improved (+1.6%). But the accuracy at the 96×96 resolution drops (-0.8%).



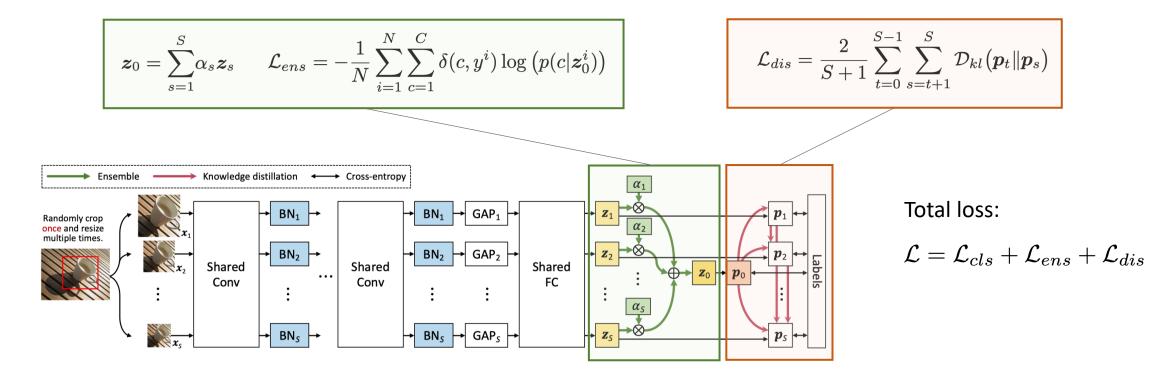
> 2. Analysis of multi-resolution interaction effects

- Accuracy gaps over different resolutions tend to be enlarged (not just for the 224×224 and 96×96 case), for which in our paper, we provide an analysis from the aspect of the train-test recognition discrepancy.
- > To alleviate such inconsistent accuracy variations, we propose an ensemble distillation design (next page).



➢ 3. On-the-fly ensemble and knowledge distillation

A new design of ensemble and knowledge distillation, which can be learnt on-the-fly based on the <u>same</u> image instances with different resolutions. The ensemble and distillation are not needed during inference.



Experiments and codes

- Our code and models are available at <u>https://github.com/yikaiw/RS-Nets</u>
- We perform experiments on ImageNet (ILSVRC12) dataset. We provide <u>PyTorch</u> implementation for

non-quantization and TensorFlow implementation for quantization.

Network	Resolution	MAdds	I-Nets (base)	I-224	Our Parallel	Our RS-Net
	224×224	1.82G	71.0 / 90.0	71.0 / 90.0	73.0 / 90.9 (+2.0)	73.1 / 91.0 (+2.1)
	192 imes 192	1.34G	69.8 / 89.4	68.7 / 88.5 _(-1.1)	71.7 / 90.3 (+1.9)	72.2 / 90.6 (+2.4)
ResNet18	160×160	931M	68.5 / 88.2	64.7 / 85.9 _(-5.2)	70.4 / 89.6 (+1.9)	71.1 / 90.1 (+2.6)
	128×128	596M	66.3 / 86.8	56.8 / 80.0 _(-9.5)	67.5 / 87.8 _(+1.2)	68.7 / 88.5 _(+2.4)
	96 imes 96	335M	62.6 / 84.1	42.5 / 67.9 (-20.1)	61.5 / 83.5 (-1.1)	64.1 / 85.3 _(+1.5)
	Total Pa	rams	55.74M	11.15M	11.18 M	11.18M
ResNet50	224×224	4.14G	77.1 / 93.4	77.1 / 93.4	78.9 / 94.4 (+1.8)	79.3 / 94.6 (+2.2)
	192 imes 192	3.04G	76.4 / 93.2	75.5 / 92.5 (-0.9)	78.1 / 94.0 (+1.7)	78.8 / 94.4 (+2.4)
	160×160	2.11G	75.3 / 92.4	72.4 / 90.7 (-2.9)	76.9 / 93.1 (+1.6)	77.9 / 93.9 _(+2.6)
	128×128	1.35G	73.5/91.4	66.8 / 87.0 _(-6.7)	74.9 / 92.1 (+1.4)	76.3 / 93.0 (+2.8)
	96 imes 96	760M	70.7 / 89.8	54.9 / 78.2 $_{\rm (-15.8)}$	70.2 / 89.4 (-0.5)	72.7 / 91.0 (+2.0)
	Total Params		121.87M	24.37M	24.58M	24.58M
M-NetV2	224×224	301M	72.1 / 90.5	72.1 / 90.5	72.8 / 90.9 (+0.7)	73.0 / 90.8 (+0.9)
	192 imes 192	221M	71.0 / 89.8	70.2 / 89.1 (-0.9)	71.7 / 90.2 (+0.7)	72.2 / 90.5 (+1.2)
	160×160	154M	69.5 / 88.9	66.1 / 86.3 _(-3.2)	70.1 / 89.2 (+0.6)	71.1 / 90.2 _(+1.6)
	128×128	99M	66.8 / 87.0	58.3 / 81.2 (-8.5)	67.3 / 87.2 _(+0.5)	68.8 / 88.2 (+2.0)
	96 imes 96	56M	62.6 / 84.0	$43.9\ \text{/}\ 69.1\ _{(\text{-}18.7)}$	61.4 / 83.3 (-1.2)	63.9 / 84.9 _(+1.3)
	Total Params		16.71M	3.34M	3.47M	3.47M

Basic results (non-quantization)

Quantization results

Network	Resolution	Bit-width	(W/A): 2/32	Bit-width (W/A): 2 / 2	
INCLWOIK	Resolution	I-Nets (base)	Our RS-Net	I-Nets (base)	Our RS-Net
	224×224	68.0 / 88.0	68.8 / 88.4 (+0.8)	64.9 / 86.0	65.8 / 86.4 (+0.9)
Quantizad	192×192	66.4 / 86.9	67.6 / 87.8 _(+1.2)	63.1 / 84.7	64.8 / 85.8 (+1.7)
Quantized ResNet18	160×160	64.5 / 85.5	66.0 / 86.5 _(+1.5)	61.1 / 83.3	62.9 / 84.2 _(+1.8)
Residents	128×128	61.5 / 83.4	63.1 / 84.5 (+1.6)	58.1 / 80.8	59.3 / 81.9 (+1.2)
	96 imes 96	56.3 / 79.4	56.6 / 79.9 _(+0.3)	52.3 / 76.4	52.5 / 76.7 $_{(+0.2)}$
	224×224	74.6 / 92.2	76.0 / 92.8 (+1.4)	72.2 / 90.8	74.0 / 91.5 (+1.8)
Quantized	192×192	73.5/91.3	75.1 / 92.4 _(+1.6)	70.9 / 89.8	73.1 / 91.0 (+2.2)
ResNet50	160×160	71.9 / 90.4	73.8 / 91.6 (+1.9)	69.0/88.5	71.4 / 90.0 (+2.4)
Residentio	128×128	69.6 / 88.9	71.7 / 90.2 (+2.1)	66.6 / 86.9	68.9 / 88.3 _(+2.3)
	96 imes 96	65.5 / 86.0	67.3 / 87.4 _(+1.8)	61.7 / 83.4	63.4 / 84.7 (+1.7)