

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks

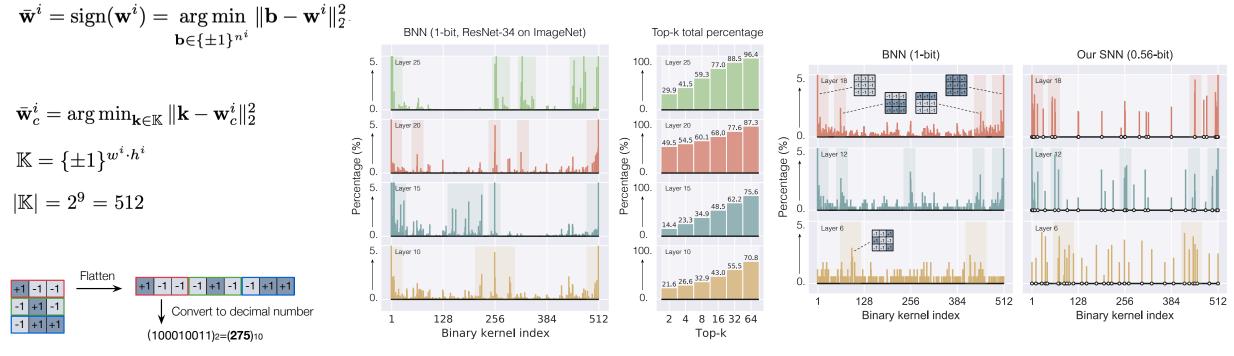
Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao

Tsinghua University, Intel Corporation

CVOCTOBER 11-17 Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks

Sub-bit Neural Networks (SNNs): The first method that simultaneously compresses and accelerates BNNs in a quantization pipeline with moderate accuracy drops.

2021



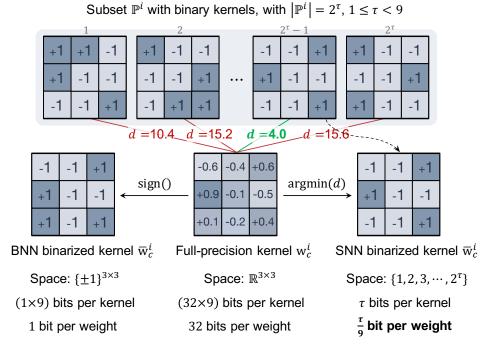
Distributions of binary kernels for a standard BNN, where binary kernels are sparsely distributed. Frequencies of different binary kernels of a standard 1-bit BNN and our 0.56-bit SNN.

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks

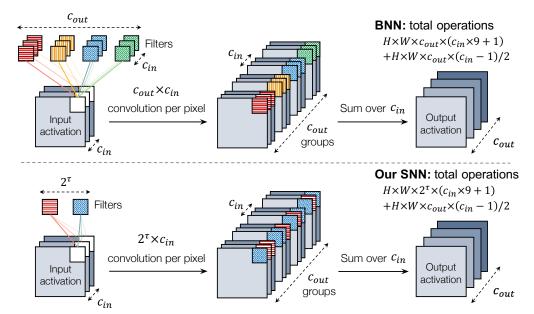
- **Compression**: SNN leads to a compression ratio $\tau/9$
- > Acceleration (with practical hardware design):

OCTOBER 11-17

- Bit-OPs of a BNN: $2 \cdot H \cdot W \cdot c_{out}^i \cdot (c_{in}^i \cdot w^i \cdot h^i + 1)$
- SNN reduces this number with ratio $2^{\tau}/c_{out}^{i}$



Binarization comparison of a standard BNN model and SNN.



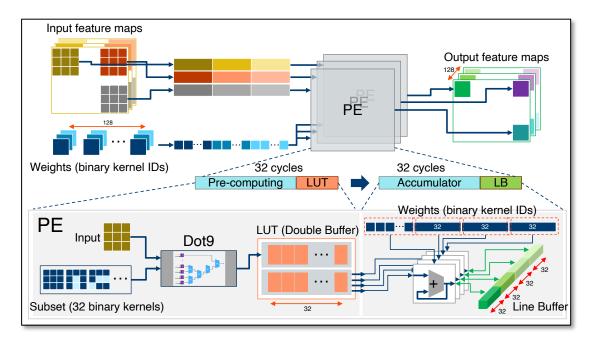
Comparison of convolution processes in a standard BNN and SNN.

Theoretically, each kernel in the subset is precomputed per channel and per pixel of the input activation, and there are $2^{\tau} \times c_{in}^{i} \times W^{i} \times H^{i}$ precomputed results.

However, by well designing the computation flow, we can reduce the LUT size to 2^{τ} and thus decrease the lookup time costs (next page).

CCVOCTOBER 11-17 Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks

- Acceleration (with practical hardware design):
 - Bit-OPs of a BNN: $2 \cdot H \cdot W \cdot c_{out}^i \cdot (c_{in}^i \cdot w^i \cdot h^i + 1)$
 - SNN reduces this number with ratio $2^{\tau}/c_{out}^{i}$

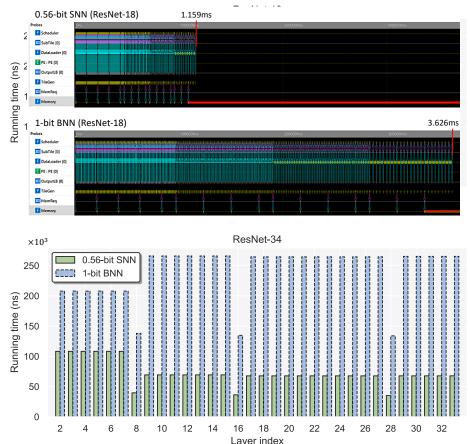


A hardware design case for the deployment of our 0.56-bit SNN, with 64 PEs and 4 parallel accumulators. Pre-computing and accumulating are performed simultaneously with the same cycles in a pipeline.

Backbone	Running	Speed up	
	1-bit BNN	0.56-bit SNN	Speed up
ResNet-18	3.626	1.159	3.13 ×
ResNet-34	7.753	2.329	3.33×

Speed tests of the practical deployment for BNNs and SNNs.

224×224 input on the hardware configuration of 64PEs@1GHz.



Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks

> Optimization method:

VIRTUAI

Random Kernel Subsets Sampling

Forward :
$$\bar{\mathbf{w}}_{c}^{i} = \underset{\mathbf{k}\in\mathbb{P}^{i}}{\arg\min} \|\mathbf{k} - \mathbf{w}_{c}^{i}\|_{2}^{2},$$

Backward : $\frac{\partial \mathcal{L}}{\partial \mathbf{w}_{c}^{i}} \approx \begin{cases} \frac{\partial \mathcal{L}}{\partial \bar{\mathbf{w}}_{c}^{i}}, & \text{if } \mathbf{w}_{c}^{i} \in (-1, 1), \\ 0, & \text{otherwise.} \end{cases}$

Kernel Subsets Refinement by Optimization

$$\mathbf{m}^{i} = \mathbf{m}^{i} \odot \mathbb{I}_{|\mathbf{p}^{i}| \leq \theta} + \operatorname{sign}(\mathbf{p}^{i}) \odot \mathbb{I}_{|\mathbf{p}^{i}| > \theta},$$

Forward : $\mathbf{\bar{w}}_{c}^{i} = \operatorname{arg\,min}_{m_{j}^{i}} \|\mathbf{m}_{j}^{i} - \mathbf{w}_{c}^{i}\|_{2}^{2}$
Backward : Eq. (3), $\frac{\partial \mathcal{L}}{\partial \mathbf{p}^{i}} \approx \frac{\partial \mathcal{L}}{\partial \mathbf{m}^{i}},$

Algorithm 1 Training: forward and backward processes of Sub-bit Neural Networks (SNNs). 1: **Require**: input data; full-precision weights w; threshold θ ; learning rate η . 2: for layer $i = 1 \rightarrow L$ do Randomly sample a layer-specific subset $\mathbb{P}^i \subset \mathbb{K}$ and there is $|\mathbb{P}^i| = 2^{\tau}$; Represent \mathbb{P}^i as $\mathbf{p}^i \in \mathbb{R}^{w^i \cdot h^i \cdot |\mathbb{P}^i|}$. 4: Initialize $\mathbf{m}^i = \operatorname{sign}(\mathbf{p}^i)$. 5: 6: for step $t = 1 \rightarrow T$ do Forward propagation: 7: for layer $i = 1 \rightarrow L$ do 8: Compute $\mathbf{m}^i = \mathbf{m}^i \odot \mathbb{I}_{|\mathbf{p}^i| < \theta} + \operatorname{sign}(\mathbf{p}^i) \odot \mathbb{I}_{|\mathbf{p}^i| > \theta}$. 9: for channel $c = 1 \rightarrow c_{out}^i \cdot c_{in}^i$ do 10: Compute $\bar{\mathbf{w}}_c^i = \arg\min_{\mathbf{m}_i^i} \|\mathbf{m}_j^i - \mathbf{w}_c^i\|_2^2$. 11: Compute $\mathbf{a}_{c}^{i} = \lambda_{c}^{i} \cdot (\bar{\mathbf{w}}_{c}^{i} \circ \operatorname{sign}(\mathbf{a}_{c}^{i-1}))$ in Sec. 3. 12: **Back propagation:** 13: for layer $i = L \rightarrow 1$ do 14: for channel $c = 1 \rightarrow c_{out}^i \cdot c_{in}^i$ do 15: Compute $\frac{\partial \mathcal{L}}{\partial \mathbf{w}^{i}}$ via Eq. (3). 16: Compute $\frac{\partial \mathcal{L}}{\partial \mathbf{p}^i} \approx \frac{\partial \mathcal{L}}{\partial \mathbf{m}^i}$. 17: **Parameters Update:** 18: Update $\mathbf{w} = \mathbf{w} - \eta \frac{\partial \mathcal{L}}{\partial \mathbf{w}}, \mathbf{p} = \mathbf{p} - \eta \frac{\partial \mathcal{L}}{\partial \mathbf{p}}.$ 19: Check repetitive binary kernels in m^i and substitute these 20:

corresponding kernels in \mathbf{p}^i with random new kernels.

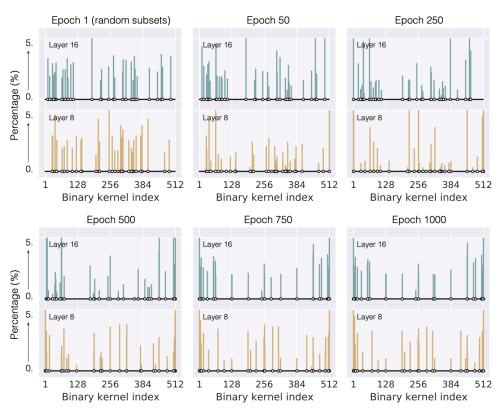
Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks

Bit-width #Params Bit-OPs Top-1 Acc

Experiments

2021

CVOCTOBER 11-17



Visualization of how binary kernel subsets change during the training process of a 0.56-bit SNN.

Method	Bit-width	#Params	Bit-OPs	Top-1 Acc.	
	(W/A)	(Mbit)	(G)	(%)	
		esNet-18			
Full precision	32/32	351.54	35.03	93.0	
RAD [5]	1/1	10.99	0.547	90.5	
IR-Net [23]	1/1	10.99	0.547	91.5	
Vanilla-SNN SNN		7.324 (1.5×)	0.289 (1.9×)	89.7 91.0	
Vanilla-SNN SNN	/	6.103 (1.8×)	0.164 (3.3×)	89.3 90.6	
Vanilla-SNN SNN		4.882 (2.3×)	0.097 (5.6×)	88.3 90.1	
IR-Net* [23]	1/32	10.99	17.52	92.9	
Vanilla-SNN SNN	0.67/32	7.324 (1.5×)	9.236 (1.9×)	92.4 92.7	
Vanilla-SNN SNN		6.103 (1.8×)	5.239 (3.3×)	92.0 92.3	
Vanilla-SNN SNN	0.44/32	4.882 (2.3×)	3.106 (5.6×)	91.6 91.9	
	Re	esNet-20		· · · ·	
Full precision	32/32	8.54	2.567	91.7	
DoReFa [33]	1/1	0.267	0.040	79.3	
IR-Net [23]	1/1	0.267	0.040	86.5	
Vanilla-SNN SNN		0.178 (1.5×)	0.040	83.9 85.1	
Vanilla-SNN SNN		0.148 (1.8×)	0.034 (1.2×)	82.7 84.0	
Vanilla-SNN SNN		0.119 (2.3×)	0.025 (1.6×)	82.0 82.5	
DoReFa [33]	1/32	0.267	1.283	90.0	
LQ-Net [30]	1/32	0.267	1.283	90.1	
IR-Net [23]	1/32	0.267	1.283	90.8	
Vanilla-SNN SNN		0.178 (1.5×)	1.283	88.7 90.0	
Vanilla-SNN SNN	/	0.148 (1.8×)	1.099 (1.2×)	87.8 88.9	
Vanilla-SNN SNN	/	0.119 (2.3×)	0.822 (1.6×)	87.1 87.6	
	/	GG-small			
Full precision	32/32	146.24	38.66	92.5	
LAB [9]	1/1	4.571	0.603	87.7	
XNOR [24]	1/1	4.571	0.603	89.8	
BNN [12]	1/1	4.571	0.603	89.9	
RAD [5]	1/1	4.571	0.603	90.0	
IR-Net [23]	1/1	4.571	0.603	90.4	
IR-Net* [23]	1/1	4.571	0.603	91.3	
Vanilla-SNN SNN		3.047 (1.5×)	0.194 (3.1×)	90.3 91.0	
Vanilla-SNN SNN	/	2.540 (1.8×)	$0.113(5.3\times)$	89.8 90.6	
Vanilla-SNN SNN		2.032 (2.3×)	0.074 (8.1×)	89.2 90.0	
IR-Net* [23]	1/32	4.571	19.30	92.5	
Vanilla-SNN SNN		3.047 (1.5×)	6.208 (3.1×)	92.0 92.4	
Vanilla-SNN SNN		$2.540 (1.8 \times)$	3.616 (5.3×)	91.7 92.1	
Vanilla-SNN SNN	1 /	$2.040(1.8\times)$ 2.032 (2.3×)	$2.368 (8.1 \times)$	91.3 91.9	
	0.77/32	2.032 (2.3X)	2.500 (0.1 X)	71.5 71.9	

Results on the CIFAR10 dataset.

Method	Bit-width	#Params	Bit-OPs	Top-1 Acc.			
Method	(W/A)	(Mbit)	(G)	(%)			
ResNet-18							
Full precision	32/32	351.54	107.28	69.6			
XNOR [24]	1/1	10.99	1.677	51.2			
BNN+ [12]	1/1	10.99	1.677	53.0			
Bi-Real [21]	1/1	10.99	1.677	56.4			
XNOR++ [2]	1/1	10.99	1.677	57.1			
IR-Net [23]	1/1	10.99	1.677	58.1			
Vanilla-SNN SNN	0.67/1	7.324 (1.5×)	0.883 (1.9×)	55.7 56.3			
Vanilla-SNN SNN	0.56/1	6.103 (1.8×)	0.501 (3.3×)	54.6 55.1			
Vanilla-SNN SNN	0.44/1	4.882 (2.3×)	0.297 (5.6×)	52.5 53.0			
BWN [24]	1/32	10.99	53.64	60.8			
HWGQ [17]	1/32	10.99	53.64	61.3			
BWHN [11]	1/32	10.99	53.64	64.3			
IR-Net [23]	1/32	10.99	53.64	66.5			
FleXOR [15]	0.80/32	8.788 (1.3×)	53.64	63.8			
FleXOR [15]	0.60/32	6.591 (1.7×)	53.64	62.0			
Vanilla-SNN SNN	0.67/32	7.324 (1.5×)	28.26 (1.9×)	63.7 64.7			
Vanilla-SNN SNN	0.56/32	6.103 (1.8×)	16.03 (3.3×)	62.8 63.4			
Vanilla-SNN SNN	0.44/32	4.882 (2.3×)	9.504 (5.6×)	60.1 60.9			
ResNet-34							
Full precision	32/32	674.88	225.66	73.3			
Bi-Real [21]	1/1	21.09	3.526	62.2			
IR-Net [23]	1/1	21.09	3.526	62.9			
Vanilla-SNN SNN	0.67/1	14.06 (1.5×)	1.696 (2.1×)	60.6 61.4			
Vanilla-SNN SNN	0.56/1	11.71 (1.8×)	0.965 (3.7×)	59.5 60.2			
Vanilla-SNN SNN	0.44/1	9.372 (2.3×)	0.581 (6.1×)	58.1 58.6			
IR-Net [23]	1/32	21.09	112.83	70.4			
Vanilla-SNN SNN	0.67/32	14.06 (1.5×)	54.27 (2.1×)	67.5 68.0			
Vanilla-SNN SNN	0.56/32	11.71 (1.8×)	30.88 (3.7×)	66.3 66.9			
Vanilla-SNN SNN	0.44/32	9.372 (2.3×)	18.59 (6.1×)	64.5 65.1			

Results on the ImageNet dataset.

Thanks for your listening!