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Ø Sub-bit Neural Networks (SNNs): The first method that simultaneously compresses and accelerates
BNNs in a quantization pipeline with moderate accuracy drops.
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Distributions of binary kernels for a standard BNN, 
where binary kernels are sparsely distributed.
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Frequencies of different binary kernels of a 
standard 1-bit BNN and our 0.56-bit SNN.
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Ø Compression: SNN leads to a compression ratio 𝝉/𝟗
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Binarization comparison of a standard BNN model and SNN.
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BNN: total operations

Our SNN: total operations

Theoretically, each kernel in the subset is precomputed per channel
and per pixel of the input activation, and there are 2!×𝑐"#" ×𝑊"×𝐻"
precomputed results.

However, by well designing the computation flow, we can reduce the
LUT size to 2! and thus decrease the lookup time costs (next page).

Comparison of convolution processes in a standard BNN and SNN.
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Ø Acceleration (with practical hardware design):
• Bit-OPs of a BNN: 
• SNN reduces this number with ratio 𝟐𝝉/𝒄𝒐𝒖𝒕𝒊
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Speed tests of the practical deployment for BNNs and SNNs. 
224×224 input on the hardware configuration of 64PEs@1GHz.

0.56-bit SNN (ResNet-18)

1-bit BNN (ResNet-18)

1.159ms

3.626ms

Ø Acceleration (with practical hardware design):
• Bit-OPs of a BNN: 
• SNN reduces this number with ratio 𝟐𝝉/𝒄𝒐𝒖𝒕𝒊

A hardware design case for the deployment of our 0.56-bit SNN, with
64 PEs and 4 parallel accumulators. Pre-computing and accumulating
are performed simultaneously with the same cycles in a pipeline.
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Ø Optimization method:
• Random Kernel Subsets Sampling

• Kernel Subsets Refinement by Optimization
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Ø Experiments
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Results on the ImageNet dataset.Results on the CIFAR10 dataset.

Visualization of how binary kernel subsets change during 
the training process of a 0.56-bit SNN.
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Thanks for your listening!
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